Effects of Aerosol Number Concentration and Updraft Velocity on Relative Dispersion during the Collision–Coalescence Growth Stage of Warm Clouds

Author:

Yang Suying1,Zhang Yanzhe2,Yu Xinyang3,Lu Chunsong2,Li Yiyu4

Affiliation:

1. Institute of Public Security Governance, Emergency Management School, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Zhongshan Meteorological Service, Zhongshan 528400, China

4. Weather Modification Office, Meteorological Disasters Defense Technology Center, Meteorological Bureau of Shanxi Province, Taiyuan 030032, China

Abstract

Relative dispersion (ɛ) is a key expression used to parameterize various cloud processes in global circulation models (GCMs) and meteorological mesoscale models. Aerosols, updraft velocity (w), and different growth stages of warm clouds are known to affect relative dispersion. A two-dimensional detailed bin microphysical cloud model is used to investigate the combined impacts of aerosol number concentration (Na) and updraft velocity on relative dispersion in the collision–coalescence stage. In addition, the causes potentially controlling the changes in ɛ with updraft velocity are explored. There are three main influence regimes: the updraft velocity main influence regime, the aerosol main influence regime, and the joint influence regime. The cause of the variations in ɛ with updraft velocity is found to be different in the three main influence regimes. In the updraft velocity main influence regime, vigorous collision–coalescence due to stronger w results in a shift in the cloud droplet number concentration spectrum toward larger droplets, and the average cloud droplet radius increases, but the spectral width is less variable, so ε decreases. In the joint influence regime, stronger cloud droplet evaporation due to the stronger dragging effect of large cloud droplets widens the spectrum, mainly by reducing the cloud droplet number concentration (Nc) of 4–30 μm, and ε increases with the reduction in w. In the aerosol main influence regime, the strongest dragging effect reduces Nc at all radii with decreasing w, and the cloud droplet number concentration spectrum (CDNCS) narrows, which becomes the formation mechanism of the positive correlation between ε and w. Evaporation mainly causes a negative correlation between ε and Nc, but weak evaporation causes the correlation to become positive under the background of high aerosol concentration. At low aerosol concentrations, a strong collision–coalescence effect leads to a negative correlation between Nc and ε, but at high aerosol concentrations, the correlation is the opposite due to a weak collision–coalescence effect.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3