Gaseous and Particulate Pollution in the Wu-Chang-Shi Urban  Agglomeration on the Northern Slope of Tianshan Mountains from 2017 to 2021

Author:

Chen ZhiORCID,Li Zhongqin,Xu Liping,Zhou Xi,Zhang Xin,Wang Fanglong,Luo Yutian

Abstract

Rapid social development has led to serious air pollution problems in cities, and air pollutants, including gaseous pollutants and particulate matter, have an important impact on climate, the environment, and human health. This study analyzed the characteristics, potential sources, and causes of air pollution in the Wu-Chang-Shi urban cluster. The results showed that NO2, CO, SO2, PM10, and PM2.5 had a tendency to decrease, while O3 showed an increasing trend. The concentrations of SO2, NO2, CO, PM2.5, and PM10 showed the highest values in winter and the lowest values in summer, with similar seasonal variations. However, the concentration of O3 was highest in the summer and lowest in the winter. Compared with the pollutant concentrations in other Chinese cities, PM2.5, PM10, and NO2 are more polluted in the Wu-Chang-Shi urban. Meteorological factors have a greater impact on pollutant concentrations, with higher concentrations of major pollutants observed when wind speeds are low and specific wind directions are observed, and higher secondary pollutant O3 concentrations observed when wind speeds are low and specific wind directions are observed. The backward trajectory and concentration weighting analysis show that the particulate pollutants in the Wu-Chang-Shi urban in winter mainly come from Central Asia and surrounding cities. O3 showed an increasing trend before and after the novel coronavirus outbreak, which may be related to changes in NOX, volatile organic compounds, and solar radiation intensity, and the concentrations of SO2, NO2, CO, PM10, and PM2.5 showed an overall decreasing trend after the outbreak and was smaller than before the outbreak, which is related to the reduction of industrial and anthropogenic source emissions during the outbreak.

Funder

Third Xinjiang Scientific Expedition (TXSE) program

Second Tibetan Plateau Scientific Expedition and Research

Strategic Priority Research Program of Chinese Academy of Sciences

SKLCS founding

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3