Evaluating the Measurement Uncertainty of On-Road NOx Using a Portable Emission Measurement System (PEMS) Based on Real Testing Data in China

Author:

Su Sheng12ORCID,Hou Pan2,Wang Xin3ORCID,Lyu Liqun3,Ge Yang4,Lyu Tao2,Lai Yitu2,Luo Wanyou2,Wang Yachao3

Affiliation:

1. College of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China

2. Xiamen Environment Protection Vehicle Emission Control Technology Center, Xiamen 361023, China

3. National Laboratory of Automotive Performance & Emission Test, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

4. Department of Science, Tianjin University of Technology and Education, Tianjin 300222, China

Abstract

An evaluation of the measurement uncertainty of on-road NOx emissions using portable emission measurement system (PEMS) based on real local testing data collected in China was carried out as per the type B method defined in the EN 17507 standard. The aim of this work was to quantify the “absolute” measurement uncertainty of PEMSs, which excluded “PEMS relative to laboratory constant volume sampler (CVS)” uncertainty from the calculation of on-road NOx measurement uncertainty using PEMSs. PEMS instruments from three mainstream manufacturers were employed. The zero drift of the NOx analyzers was evaluated periodically during the real driving emissions (RDE) test, and it was noticed that there was neither a linear nor step model of zero drift, with no correlation with the boundary conditions or measurement principle. Additionally, from the 256 valid RDE tests, the zero drift always ranged from 3.8 ppm to −3.8 ppm, and more than 95% of the span drifts were within a range of 1.5%. Based on the laboratory testing of ten vehicles using the worldwide harmonized light-duty vehicle test cycle (WLTC), the type B uncertainty of PEMS NOx measurements corresponding to China-6a and China-6b limits was assessed. An uncertainty of 26.5% for China-6a was found (NOx limit = 60 mg/km over the WLTC), which is very close to the 22.5% from the EU evaluation results (NOx limit = 80 mg/km over the WLTC); the uncertainty with respect to China-6b was found to be 42.8% because the type-I limit was tuned down to 35 mg/km. This result indicates that, with the ever-tightening regulatory limits of vehicle NOx emissions, big challenges will be posed in terms of the reliability of PEMS measurements, which requires PEMS manufacturers to improve the performance of the instruments and policymakers to refine the test procedures and/or result calculation method to minimize the impacts.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3