Modeling of a Rotary Adsorber for Continuous Capture of Indoor Carbon Dioxide

Author:

Liu Lumeng123ORCID,Wan Ning123,Zeng Wenmao123,Shi Jiachen123,Liu Meng123,Liu Huan123ORCID

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing 400045, China

2. Joint International Research Laboratory of Green Buildings and Built Environments, Ministry of Education, Chongqing University, Chongqing 400045, China

3. National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing 400045, China

Abstract

Removing indoor CO2 as a pollutant via solid sorbents is a promising solution to maintaining acceptable indoor air quality while minimizing the energy consumption of ventilation. Compared to fixed-bed and fluidized-bed configurations, which require at least two beds to allow for continuous operation, a rotary adsorber is more compact and suitable to be integrated into the ventilation systems of buildings. In the present study, a regenerative rotary adsorber based on temperature swing adsorption was modeled to investigate continuous CO2 capture in an indoor environment. The governing equations of heat and mass transfer processes associated with the capture were established and coded in ANSYS Fluent software. The spatiotemporal variations of CO2 concentration and temperature in gas and solid phases within the rotary adsorber were obtained. The key findings are: (1) adjusting the speed mainly affects circumferential concentration and temperature distribution, but has little impact on axial concentration and temperature; (2) Increasing desorption inlet flow rate has little impact on adsorption outlet concentration, but significantly decreases desorption outlet concentration; (3) Raising desorption inlet temperature can increase both adsorption and desorption outlet average concentrations; (4) Reducing the volume proportion of the desorption sector will slightly increase adsorption outlet concentration and slightly decrease desorption outlet concentration, but barely affects average adsorption and desorption outlet temperatures.

Funder

National Natural Science Foundation of China

University Scientific Research and Innovation Team Program of Chongqing

111 Project of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3