An Assessment of Global Dimming and Brightening during 1984–2018 Using the FORTH Radiative Transfer Model and ISCCP Satellite and MERRA-2 Reanalysis Data

Author:

Stamatis Michael1ORCID,Hatzianastassiou Nikolaos1,Korras-Carraca Marios-Bruno12ORCID,Matsoukas Christos3ORCID,Wild Martin4ORCID,Vardavas Ilias5

Affiliation:

1. Laboratory of Meteorology & Climatology, Department of Physics, University of Ioannina, 45110 Ioannina, Greece

2. Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 11810 Athens, Greece

3. Department of Environment, University of the Aegean, 81100 Mytilene, Greece

4. Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland

5. Department of Physics, University of Crete, 71003 Heraklion, Greece

Abstract

In this study, an assessment of the FORTH radiative transfer model (RTM) surface solar radiation (SSR) as well as its interdecadal changes (Δ(SSR)), namely global dimming and brightening (GDB), is performed during the 35-year period of 1984–2018. Furthermore, a thorough evaluation of SSR and (Δ(SSR)) is conducted against high-quality reference surface measurements from 1193 Global Energy Balance Archive (GEBA) and 66 Baseline Surface Radiation Network (BSRN) stations. For the first time, the FORTH-RTM Δ(SSR) was evaluated over an extended period of 35 years and with a spatial resolution of 0.5° × 0.625°. The RTM uses state-of-the-art input products such as MERRA-2 and ISCCP-H and computes 35-year-long monthly SSR and GDB, which are compared to a comprehensive dataset of reference measurements from GEBA and BSRN. Overall, the FORTH-RTM deseasonalized SSR anomalies correlate satisfactorily with either GEBA (R equal to 0.72) or BSRN (R equal to 0.80). The percentage of agreement between the sign of computed GEBA and FORTH-RTM Δ(SSR) is equal to 63.5% and the corresponding percentage for FORTH-RTM and BSRN is 54.5%. The obtained results indicate that a considerable and statistically significant increase in SSR (Brightening) took place over Europe, Mexico, Brazil, Argentina, Central and NW African areas, and some parts of the tropical oceans from the early 1980s to the late 2010s. On the other hand, during the same 35-year period, a strong and statistically significant decrease in SSR (Dimming) occurred over the western Tropical Pacific, India, Australia, Southern East China, Northern South America, and some parts of oceans. A statistically significant dimming at the 95% confidence level, equal to −0.063 Wm−2 year−1 (or −2.22 Wm−2) from 1984 to 2018 is found over the entire globe, which was more prevalent over oceanic than over continental regions (−0.07 Wm−2 year−1 and −0.03 Wm−2 year−1, statistically significant dimming at the 95% confidence level, respectively) in both hemispheres. Yet, this overall 35-year dimming arose from alternating decadal-scale changes, consisting of dimming during 1984–1989, brightening in the 1990s, turning into dimming over 2000–2009, and brightening during 2010–2018.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference98 articles.

1. Muneer, T., and Gueymard, C.H.K. (2004). Radiation and Daylight Models, Elsevier Butterworth Heinemann. [2nd ed.].

2. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. Global Dimming and Brightening—Evidence and Agricultural Implications;Wild;CABI Rev.,2012

4. How Declining Aerosols and Rising Greenhouse Gases Forced Rapid Warming in Europe since the 1980s;Philipona;Geophys. Res. Lett.,2009

5. A New Look at Solar Dimming and Brightening in China;Wang;Geophys. Res. Lett.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3