Assessment of High-Resolution Surface Soil Moisture Products over the Qinghai–Tibet Plateau for 2009–2017

Author:

Lin Dongjun12,Yuan Xing12ORCID,Jia Binghao3ORCID,Ji Peng12ORCID

Affiliation:

1. Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. State Key Laboratory of Numerical Modeling for Atmosphere Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

The surface soil moisture over the Qinghai–Tibet Plateau (QTP) has an important impact on the weather and climate of East Asia. Under climate warming, the imbalance of solid–liquid water of QTP has become a research hotspot, but the surface soil moisture dynamics over QTP are not clear owing to the lack of precise measurements over a large scale. In this paper, the quality of gridded surface soil moisture products including CSSPv2 high-resolution (6 km) simulation, ESA CCI satellite retrieval, ERA5 land-atmosphere coupled reanalysis, and GLDAS2.1 land reanalysis products (Noah, Catchment, VIC) is analyzed over QTP by comparison with the in situ measurements at 140 stations during 2009–2017. We find that the CSSPv2 product shows a higher correlation than the global satellite and reanalysis products, with correlation increased by 7.7%–115.6%. The root mean squared error of the CSSPv2 product is lower than that of other products, with the error decreased by 13.4%–46.3%. The triple collocation analysis using high-resolution simulation, global reanalysis, and satellite retrieval products over the entire plateau shows that the error of CSSPv2 is the lowest, followed by ESA CCI, while ERA5 is the highest. The soil moisture products of ESA CCI, ERA5, and CSSPv2 all show an increasing trend from April to September of 2009 to 2017, with wetting in the west and drying in the east. This study indicates that the CSSPv2 high-resolution surface soil moisture product has better performance over QTP than other global products, and the global satellite and reanalysis products may overestimate the surface soil moisture dynamics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3