Accuracy Analysis of Real-Time Precise Point Positioning—Estimated Precipitable Water Vapor under Different Meteorological Conditions: A Case Study in Hong Kong

Author:

Xu Ying1,Ma Lin1,Zhang Fangzhao1ORCID,Chen Xin1,Yang Zaozao1

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Precipitable water vapor (PWV) monitoring with real-time precise point positioning (PPP) is required for the improved early detection of increasingly common extreme weather occurrences. This study takes Hong Kong as the research object. The aim is to explore the accuracy of real-time global navigation satellite system (GNSS) PPP in estimating PWV at low latitudes and under different weather conditions. In this paper, real-time PPP is realized by using observation data from continuously operating reference stations (CORS) in Hong Kong and real-time products from the Centre National d’Etudes Spatiales (CNES). The Tm model calculated using numerical weather prediction (NWP) data converts the zenith tropospheric delay (ZTD) of real-time PPP inversion into PWV and evaluates its accuracy using postprocessing products. The experimental results show that compared with GPS, multi-GNSS can reduce the convergence time of PPP by 29.20% during rainfall periods and by 12.06% during nonrainfall periods. The improvement in positioning accuracy is not obvious, and the positioning accuracy of the two is equivalent. Real-time PPP ZTD experiments show that there are lower average values for bias, standard deviation (STDEV), and root mean square (RMS) during nonrainfall periods than during rainfall periods. Real-time PPP PWV experiments show that there are also lower bias, STDEV, and RMS values during nonrainfall periods than during rainfall periods. The comparative study between rainfall and nonrainfall periods is of great significance for the real-time monitoring and forecasting of water vapor changes.

Funder

National Natural Science Foundation of China

Talent Introduction Plan for the Youth Innovation Team in the Universities of Shandong Province

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3