Mesospheric Ozone Depletion Depending on Different Levels of Geomagnetic Disturbances and Seasons

Author:

Mironova Irina1ORCID,Grankin Dmitry1ORCID,Rozanov Eugene1ORCID

Affiliation:

1. Department of Earth’s Physics, St. Petersburg State University, 199034 St. Petersburg, Russia

Abstract

Energetic electron precipitation (EEP) into the atmosphere are considered to play an important role in the natural forcing of the ozone variability and dynamics of the middle atmosphere during magnetospheric and geomagnetic disturbances. Energetic electrons from the radiation belt spill out into the atmosphere during geomagnetic disturbances and cause additional ionization rates in the polar middle atmosphere. These rates of induced atmospheric ionization lead to the formation of radicals in ion-molecular reactions at the heights of the mesosphere with the formation of reactive compounds of odd nitrogen groups NOy and odd hydrogen groups HOx. These compounds are involved in catalytic reactions that destroy ozone. The percentage of ozone destruction can depend not only intensity of EEP but also on season where it happens. In this work, we study mesospheric ozone depletion depending on seasons and precipitating energetic electrons with energies from keV up to relativistic energies about 1 MeV, based on the NOAA POES satellites observations in 2003. For estimation ozone deplation we use a one-dimensional radiative-convective model with ion chemistry. As one of the main results, we show that, despite the intensity of EEP-induced ionization rates, polar mesospheric ozone cannot be destroyed by EEP in summer in the presence of UV radiation. In winter time, the maximum ozone depletion, at altitude of about 80 km, can reach up to 80% during strong geomagnetic disturbances. In fall and spring, the maximum ozone depletion is less intense and can reach 20% during strong geomagnetic disturbances. Linear relation of EEP induced maximum mesospheric ozone depletion depending on geomagnetic disturbances and seasons have been obtained.

Funder

Atmospheric effects of precipitation of energetic electrons from the outer radiation belt: Part II

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3