Compositional Difference and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons over the Coal Spontaneous Combustion Zone

Author:

Yu Feng12ORCID,Yu Yang2,Ai Ning3,Gao Juanqin4,Wang Chenghui2,Huang Fan2

Affiliation:

1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

2. Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

3. Geological Survey Institute of Ningxia Hui Autonomous Region, Yinchuan 750021, China

4. Research Institute of Petroleum Exploration and Development, Changqing Oilfield Company of CNPC, Xi’an 710018, China

Abstract

In this study, the U.S. Environmental Protection Agency prioritized polycyclic aromatic hydrocarbons (PAHs), associated pollution level, and health risks were assessed in a typical coal spontaneous combustion zone in the Rujigou coal mine in Northwestern China. This study used gas chromatography-mass spectrometry (GC-MS) to detect the chemical composition, spatial variation, distribution profiles, impact of coal spontaneous combustion, and health risks of PAHs. The entire study area is divided into three zones according to different features: the spontaneous combustion zone (C-zone), the living zone (L-zone), and the non-spontaneous combustion zone (N-zone). The results showed that: (1) the highest concentrations were measured in the C-zone, and the average concentrations of PAHs in the C-zone, N-zone, and L-zone were 13.28 ng·m−3, 9.56 ng·m−3, and 7.67 ng·m−3, respectively. (2) The PAHs of the study area were mainly composed of three ring to five ring PAHs. (3) EPA positive matrix factorization (PMF) analysis of qualitative source apportionment of PAHs showed that chemical production was the major source of atmospheric PAHs in all three zones, followed by coal combustion. (4) The inhalation of PAHs showed higher potential cancer risk for children than for adults, and the impact of coal combustion in the C-zone was much greater than the other zone. The adverse health impacts associated with PAH exposure indicates the need for mitigation measures of pollution control in this region.

Funder

National Key Technologies Research and Development Program of China

China Geological Survey Project

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3