Wind Speed Modeling for Wind Farms Based on Deterministic Broad Learning System

Author:

Wang Lin12,Xue Anke1

Affiliation:

1. School of automation, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

Abstract

As the penetration rate of wind power in the grid continues to increase, wind speed forecasting plays a crucial role in wind power generation systems. Wind speed prediction helps optimize the operation and management of wind power generation, enhancing efficiency and reliability. However, wind speed is a nonlinear and nonstationary system, and traditional statistical methods and classical intelligent algorithms struggle to cope with dynamically updating operating conditions based on sampled data. Therefore, from the perspective of optimizing intelligent algorithms, a wind speed prediction model for wind farms was researched. In this study, we propose the Deterministic Broad Learning System (DBLS) algorithm for wind farm wind speed prediction. It effectively addresses the issues of data saturation and local minima that often occur in continuous-time system modeling. To adapt to the continuous updating of sample data, we improve the sample input of the Broad Learning System (BLS) by using a fixed-width input. When new samples are added, an equivalent number of old samples is removed to maintain the same input width, ensuring the feature capture capability of the model. Additionally, we construct a dataset of wind speed samples from 10 wind farms in Gansu Province, China. Based on this dataset, we conducted comparative experiments between the DBLS and other algorithms such as Random Forest (RF), Support Vector Regression (SVR), Extreme Learning Machines (ELM), and BLS. The comparison analysis of different algorithms was conducted using Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Among them, the DBLS algorithm exhibited the best performance. The RMSE of the DBLS ranged from 0.762 m/s to 0.776 m/s, and the MAPE of the DBLS ranged from 0.138 to 0.149.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3