Abstract
Cultural relics conservation and prevention from bacterial deterioration are critical for our historical heritage. Thus far, the variations of the ecophysiological features of deteriorating bacterial communities along gradients of temperature and moisture remain unclear. In this study, we used high-throughput sequencing to investigate the changing pattern of bacterial communities on bricks at different positions along two such gradients in the Two Mausoleums of the Southern Tang Dynasty, which have more than 1000 years of history. We found that the tombs were inhabited by a phylogenetically and functionally diverse bacterial microbiomes. Herein, Proteobacteria (34.5%), Cyanobacteria (31.3%), Bacteroidetes (7.8%) and Actinobacteria (7.4%), as well as ‘Amino Acid Metabolism (11.2%)’ and ‘Carbohydrate Metabolism (10.5%)’ accounted for the majorities of their compositional and functional profiles related to biodeterioration. Non-metric scaling in combination with PERMANOVA tests indicated that shifts in bacterial community compositions were governed by temperature, followed by moisture. In addition, we found that tourism-related anthropogenic activities could have played non-negligible roles in community assembly, especially in the areas that account as attractions (i.e., back room of the Qinling Mausoleum). Collectively, this study advances the knowledge regarding the deteriorating microbiomes of cultural monuments, which is essential for the conservation of historical cultural relics.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献