Identification of a Function to Fit the Flow Duration Curve and Parameterization of a Semi-Arid Region in North China

Author:

Ma Lan,Liu DengfengORCID,Huang Qiang,Guo Fengnian,Zheng XudongORCID,Zhao Jing,Luan Jinkai,Fan Jingjing,Ming Guanghui

Abstract

The discharge process has undergone major changes in many river basins throughout the world as a result of the simultaneous influences of global climate change and human activity. Flow duration curves (FDCs) are crucial indicators of river basins’ hydrological processes. However, it is challenging to compare FDCs in a quantitative way. This study will identify the best function with which to fit the flow duration curve in a semi-arid region of North China, so as to quantify the FDC, and parameterize the function of the FDC of the region in order to describe the FDCs of ungauged basins. In this work, six small- and medium-sized catchments in North China are selected as the study area, and three functions, i.e., log normal, generalized Pareto and H2018 functions, were chosen to fit the FDC at nineteen hydrological stations. The relationship between the parameters of the FDC and the basin characteristics, such as the climatic factors and geographical features, were analyzed. A regression formula of the parameters of the FDC function was established, and its spatial and temporal distributions were examined. Based on the evaluation of four indicators, the Nash–Sutcliffe efficiency, the root mean square relative error, the logarithmic Nash efficiency coefficient and the coefficient of determination, the results demonstrate that the H2018 function can match FDCs the best. Through the annual runoff, annual precipitation, precipitation in summer, potential evapotranspiration, catchment area, mean elevation, length of the main channel and maximum flow frequency, the parameters of a, b, and k in the H2018 function can be formulated. The regression formula constructed in this study can obtain a regional flow duration curve with satisfactory performance, which provides a reference for the validation of remote-sensing-based runoff data in ungauged regions.

Funder

National Natural Science Foundation of China

State Key Laboratory of Eco-hydraulics in Northwest Arid Region, China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3