The Dependence of Gales on Relevant Meteorological Elements in One of the Hottest Regions of China, the Turpan Basin

Author:

Xu Zhiqi12,Tang Hao2,Zhang Xiya1,Hu Haibo1

Affiliation:

1. Institute of Urban Meteorology, China Metrological Administration, Beijing 100089, China

2. Xinjiang Meteorological Observatory, Urumqi 830002, China

Abstract

The Turpan Basin is one of the hottest regions in China, with high fire potential. The occurrence of gales could roll over trains as well as spread and expand the fire rapidly, posing adverse effects on traffic and fire protection. Therefore, it is important to discuss the frequency and mechanism of gales in Turpan. Based on the observational data of seven stations and ERA5 reanalysis data from 2015 to 2021, this study uses the t-mode principal component analysis using the oblique rotation (T-PCA) method to explore the seasonal differences and related synoptic patterns of gales in the Turpan Basin. The synoptic circulations are divided into nine categories. In types 1, 2, 3, 5, 7 and 9, there are a high-pressure center to the west and a lower-pressure center to the south of Turpan, while in types 4, 6 and 8, there is a strong high-pressure center to the south or northeast of Turpan. When the high-pressure system is located to the west of Turpan, gales are prone to occur, while to the south or northeast, gales seem to be less likely to occur, which is closely related to synoptic patterns and terrain. To the best of our knowledge, this study pioneered the frequency and mechanism of gales in Turpan, which could facilitate gale prevention in the area.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3