Machine Learning Based on Diffusion Kurtosis Imaging Histogram Parameters for Glioma Grading

Author:

Jiang Liang,Zhou Leilei,Ai Zhongping,Xiao Chaoyong,Liu Wen,Geng Wen,Chen Huiyou,Xiong ZhenyuORCID,Yin Xindao,Chen Yu-ChenORCID

Abstract

Glioma grading plays an important role in surgical resection. We investigated the ability of different feature reduction methods in support vector machine (SVM)-based diffusion kurtosis imaging (DKI) histogram parameters to distinguish glioma grades. A total of 161 glioma patients who underwent magnetic resonance imaging (MRI) from January 2017 to January 2020 were included retrospectively. The patients were divided into low-grade (n = 61) and high-grade (n = 100) groups. Parametric DKI maps were derived, and 45 features from the DKI maps were extracted semi-automatically for analysis. Three feature selection methods [principal component analysis (PCA), recursive feature elimination (RFE) and least absolute shrinkage and selection operator (LASSO)] were used to establish the glioma grading model with an SVM classifier. To evaluate the performance of SVM models, the receiver operating characteristic (ROC) curves of SVM models for distinguishing glioma grades were compared with those of conventional statistical methods. The conventional ROC analysis showed that mean diffusivity (MD) variance, MD skewness and mean kurtosis (MK) C50 could effectively distinguish glioma grades, particularly MD variance. The highest classification distinguishing AUC was found using LASSO at 0.904 ± 0.069. In comparison, classification AUC by PCA was 0.866 ± 0.061, and 0.899 ± 0.079 by RFE. The SVM-PCA model with the lowest AUC among the SVM models was significantly better than the conventional ROC analysis (z = 1.947, p = 0.013). These findings demonstrate the superiority of DKI histogram parameters by LASSO analysis and SVM for distinguishing glioma grades.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3