Author:
Hayat Huma,Akbar Tahir Ali,Tahir Adnan Ahmad,Hassan Quazi K.,Dewan Ashraf,Irshad Muhammad
Abstract
Upper Indus Basin (UIB) supplies more than 70% flow to the downstream agricultural areas during summer due to the melting of snow and glacial ice. The estimation of the stream flow under future climatic projections is a pre-requisite to manage water resources properly. This study focused on the simulation of snowmelt-runoff using Snowmelt-Runoff Model (SRM) under the current and future Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5) climate scenarios in the two main tributaries of the UIB namely the Astore and the Hunza River basins. Remote sensing data from Advanced Land Observation Satellite (ALOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with in-situ hydro-climatic data was used as input to the SRM. Basin-wide and zone-wise approaches were used in the SRM. For the zone-wise approach, basin areas were sliced into five elevation zones and the mean temperature for the zones with no weather stations was estimated using a lapse rate value of −0.48 °C to −0.76 °C/100 m in both studied basins. Zonal snow cover was estimated for each zone by reclassifying the MODIS snow maps according to the zonal boundaries. SRM was calibrated over 2000–2001 and validated over the 2002–2004 data period. The results implied that the SRM simulated the river flow efficiently with Nash-Sutcliffe model efficiency coefficient of 0.90 (0.86) and 0.86 (0.86) for the basin-wide (zone-wise) approach in the Astore and Hunza River Basins, respectively, over the entire simulation period. Mean annual discharge was projected to increase by 11–58% and 14–90% in the Astore and Hunza River Basins, respectively, under all the RCP mid- and late-21st-century scenarios. Mean summer discharge was projected to increase between 10–60% under all the RCP scenarios of mid- and late-21st century in the Astore and Hunza basins. This study suggests that the water resources of Pakistan should be managed properly to lessen the damage to human lives, agriculture, and economy posed by expected future floods as indicated by the climatic projections.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference66 articles.
1. Study project on the recent rapid shrinkage of summer-accumulation type glaciers in the Himalayas, 1997–1999;Ageta;Bull. Glaciol. Res.,2001
2. Glaciers and the Changing Earth System: A 2004 Snapshot;Dyurgerov,2005
3. Present and future states of Himalaya and Karakoram glaciers
4. The State and Fate of Himalayan Glaciers
5. Slight mass gain of Karakoram glaciers in the early twenty-first century
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献