Hierarchical Structure-Based Wireless Active Balancing System for Power Batteries

Author:

Xie Jia1,Lin Huipin1,Qu Jifeng1,Shi Luhong2,Chen Zuhong2,Chen Sheng3,Zheng Yong3

Affiliation:

1. School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310005, China

2. Zhejiang Kangli Automation Technology Co., Ltd., Shaoxing 312500, China

3. Zhejiang Jingsheng Microelectronics Co., Ltd., Shaoxing 312300, China

Abstract

This paper conducts an in-depth study of a wireless, hierarchical structure-based active balancing system for power batteries, aimed at addressing the rapid advancements in battery technology within the electric vehicle industry. The system is designed to enhance energy density and the reliability of the battery system, developing a balancing system capable of managing cells with significant disparities in characteristics, which is crucial for extending the lifespan of lithium-ion battery packs. The proposed system integrates wireless self-networking technology into the battery management system and adopts a more efficient active balancing approach, replacing traditional passive energy-consuming methods. In its design, inter-group balancing at the upper layer is achieved through a soft-switching LLC resonant converter, while intra-group balancing among individual cells at the lower layer is managed by an active balancing control IC and a bidirectional buck–boost converter. This configuration not only ensures precise control but also significantly enhances the speed and efficiency of balancing, effectively addressing the heat issues caused by energy dissipation. Key technologies involved include lithium-ion batteries, battery management systems, battery balancing systems, LLC resonant converters, and wireless self-networking technology. Tests have shown that this system not only reduces energy consumption but also significantly improves energy transfer efficiency and the overall balance of the battery pack, thereby extending battery life and optimizing vehicle performance, ensuring a safer and more reliable operation of electric vehicle battery systems.

Funder

National Major Scientific Research Instrument Development Project of China

Central Guiding Local Science and Technology Development Fund Projects of China

Zhejiang Provincial Major Research and Development Project of China

Zhejiang Provincial Key Lab of Equipment Electronics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3