Acid–Base Catalytic Effects on Reduction of Methanol in Hot Water

Author:

Inaba SatoshiORCID

Abstract

We have performed a number of quantum chemical simulations to examine the reduction process of methanol in hot water. Methanol is converted into a methane by capturing a hydrogen molecule and leaving a water molecule behind. The required energy for the reduction is too high to proceed in the gas phase. The energy barrier for the reduction of methanol is reduced by the catalytic effect of water molecules when we consider the reduction in aqueous solution. However, the calculated reduction rate is still much slower than that found experimentally. The ion product of water tends to increase in hot water, even though it eventually decreases at the high temperature of supercritical water. It is valuable to consider the acid–base catalytic effects on the reduction of methanol in hot water. The significant reduction of the energy barrier is accomplished by the acid–base catalytic effects due to hydronium or hydroxyde. Mean collision time between a hydronium and a methanol in hot water is shorter than the reduction time, during which a methanol is converted into a methane. The calculated reduction rate with the acid–base catalytic effects agrees well with that determined by laboratory experiments. The present study reveals a crucial role of the acid–base catalytic effects on reactions in hot water.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3