Synergistic Effect of New ZrNi5/Nb2O5 Catalytic Agent on Storage Behavior of Nanocrystalline MgH2 Powders

Author:

El-Eskandarany M. Sherif,Banyan MohammadORCID,Al-Ajmi Fahad

Abstract

Due to its availability and high storage capacity, Mg is an ideal material in hydrogen storage applications. In practice, doping Mg/MgH2 with catalyst(s) is necessary in enhancing the de/rehydrogenation kinetics and minimizing both of decomposition temperature and its related apparent activation energy. The present study proposed a new heterogeneous catalytic agent that consisted of intermetallic compound (ZrNi5)/metal oxide (Nb2O5) binary system for using with different concentrations (5−30 wt%) to improve MgH2. Doping MgH2 powders with low concentration (5, 7, 10 wt%) of this new catalytic system led to superior absorption/desorption kinetics, being indexed by the short time that is required to absorb/desorb 4.2−5.6 wt% H2 within 200 s to 300 s. Increasing the doping dose to 15–30 wt% led to better kinetic effect but a significant decrease in the hydrogen storage capacity was seen. The dependent of apparent activation energy and decomposition temperature of MgH2 on the concentration of ZrNi5/Nb2O5 has been investigated. They tended to be linearly decreased with increasing the catalyst concentrations. The results elucidated the crucial role of catalytic additives on the disintegration of MgH2 into ultrafine powders (196 nm to 364 nm diameter). The formation of such nanoparticles enhance the hydrogen diffusion and shorten the time that is required for the hydrogenation/dehydrogenation process. Moreover, this refractory catalytic system acted as a grain growth inhibitor, in which Mg/MgH2 powders maintained their submicron level during the cycle-life-test that was extended to 100 h at 200 °C.

Funder

Kuwait Foundation for the Advancement of Sciences

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3