Abstract
Textile industries produce copious amounts of colored wastewater some of which are toxic to humans and aquatic biota. This study investigates optimization of a bench-scale UV-C photocatalytic process using a TiO2 catalyst suspension for degradation of two textile dyes, Acid Blue 113 (AB 113) and Acid Red 88 (AR 88). From preliminary experiments, appropriate ranges for experimental factors including reaction time, solution pH, initial dye concentration and catalyst dose, were determined for each dye. Response surface methodology (RSM) using a cubic IV optimal design was then used to design the experiments and optimize the process. Analysis of variance (ANOVA) was employed to determine significance of experimental factors and their interactions. Results revealed that among the studied factors, solution pH and initial dye concentration had the strongest effects on degradation rates of AB 113 and AR 88, respectively. Least-squares cubic regression models were generated by step-wise elimination of non-significant (p-value > 0.05) terms from the proposed model. Under optimum treatment conditions, removal efficiencies reached 98.7% for AB 113 and 99.6% for AR 88. Kinetic studies showed that a first-order kinetic model could best describe degradation data for both dyes, with degradation rate constants of k1, AB 113 = 0.048 min−1 and k1, AR 88 = 0.059 min−1.
Funder
Isfahan University of Technology
University of Nevada, Las Vegas
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献