Optimization of Photocatalytic Degradation of Acid Blue 113 and Acid Red 88 Textile Dyes in a UV-C/TiO2 Suspension System: Application of Response Surface Methodology (RSM)

Author:

Mortazavian SorooshORCID,Saber Ali,James David E.

Abstract

Textile industries produce copious amounts of colored wastewater some of which are toxic to humans and aquatic biota. This study investigates optimization of a bench-scale UV-C photocatalytic process using a TiO2 catalyst suspension for degradation of two textile dyes, Acid Blue 113 (AB 113) and Acid Red 88 (AR 88). From preliminary experiments, appropriate ranges for experimental factors including reaction time, solution pH, initial dye concentration and catalyst dose, were determined for each dye. Response surface methodology (RSM) using a cubic IV optimal design was then used to design the experiments and optimize the process. Analysis of variance (ANOVA) was employed to determine significance of experimental factors and their interactions. Results revealed that among the studied factors, solution pH and initial dye concentration had the strongest effects on degradation rates of AB 113 and AR 88, respectively. Least-squares cubic regression models were generated by step-wise elimination of non-significant (p-value > 0.05) terms from the proposed model. Under optimum treatment conditions, removal efficiencies reached 98.7% for AB 113 and 99.6% for AR 88. Kinetic studies showed that a first-order kinetic model could best describe degradation data for both dyes, with degradation rate constants of k1, AB 113 = 0.048 min−1 and k1, AR 88 = 0.059 min−1.

Funder

Isfahan University of Technology

University of Nevada, Las Vegas

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3