Effect of Cerium Precursor in the Synthesis of Ce-MCM-41 and in the Efficiency for Liquid-Phase Oxidation of Benzyl Alcohol

Author:

Aiube Carlos M.ORCID,Oliveira Karolyne V. deORCID,Macedo Julio L. deORCID

Abstract

Understanding the effects of synthetic parameters in the catalytic activity of heterogeneous catalysts is of utmost importance when aiming for optimal reaction conditions. Hence, we disclose in this work the synthesis and characterization of cerium-modified MCM-41 materials. In addition, it was observed for the first time, differences in catalytic activity when using different cerium synthetic precursors: CeCl3·7H2O and Ce(NO3)3·6H2O (Ce-MCM-Cl and Ce-MCM-NO3, respectively). A mechanism for cerium incorporation in MCM-41 was proposed, where [Ce(OH)3] species were hydrogen bonded to silicate anions, forming framework Ce-O-Si bonds during condensation and, consequently, causing distortion of the typical hexagonal mesophase. It was also observed that Ce(OH)3 formed aggregated layers with template assemblies during synthesis, resulting in non-framework CeO2 species on the MCM-41 surface after calcination. These CeO2 species were preferentially formed for Ce-MCM-NO3 and were attributed to the nitrate ions’ strong binding to template molecules. In the solvent free liquid-phase oxidation of benzyl alcohol (BzOH), Ce-MCM-Cl achieved better BzOH conversions and benzaldehyde (BzD) yields, while Ce-MCM-NO3 offered increased BzD selectivity. The catalysts’ reusability was also studied over three catalytic runs, where Ce-MCM-NO3 was more resistant than Ce-MCM-Cl towards deactivation. The observed catalytic behavior shows the importance of metal precursors in the obtainment of materials with desirable final properties.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference97 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3