Abstract
This study presents the synthesis, characteristics and catalytic reactivity of sustainable bifunctional heterogeneous catalysts derived from coal fly ash-based geopolymer, particularly those with a high Ca content (C-class) fly ash. The developed catalysts were synthesized at room temperature and pressure in a simple ecologically-benign procedure and their reactivity was evaluated in the Friedel-Crafts acylation of various arenes. These catalysts can be produced with multilevel porous architecture, and a combination of acidic and redox active sites allowing their use as bifunctional catalysts. The acidic sites (Lewis and Brønsted acidic sites) were generated within the catalyst framework by ion-exchange followed by thermal treatment, and redox sites that originated from the catalytically reactive fly ash components. The developed catalysts demonstrated higher reactivity than other commonly used solid catalysts such as Metal-zeolite and Metal-mesoporous silicate, heteropolyacids and zeolite imidazole frameworks (ZIF).
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献