Generalization Performance of Quantum Metric Learning Classifiers

Author:

Kim JonathanORCID,Bekiranov StefanORCID

Abstract

Quantum computing holds great promise for a number of fields including biology and medicine. A major application in which quantum computers could yield advantage is machine learning, especially kernel-based approaches. A recent method termed quantum metric learning, in which a quantum embedding which maximally separates data into classes is learned, was able to perfectly separate ant and bee image training data. The separation is achieved with an intrinsically quantum objective function and the overall approach was shown to work naturally as a hybrid classical-quantum computation enabling embedding of high dimensional feature data into a small number of qubits. However, the ability of the trained classifier to predict test sample data was never assessed. We assessed the performance of quantum metric learning on test ants and bees image data as well as breast cancer clinical data. We applied the original approach as well as variants in which we performed principal component analysis (PCA) on the feature data to reduce its dimensionality for quantum embedding, thereby limiting the number of model parameters. If the degree of dimensionality reduction was limited and the number of model parameters was constrained to be far less than the number of training samples, we found that quantum metric learning was able to accurately classify test data.

Funder

National Science Foundation

GlaxoSmithKline

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference42 articles.

1. Preskill, J. The Physics of Quantum Information. arXiv, 2022.

2. Quantum Chemistry in the Age of Quantum Computing;Cao;Chem. Rev.,2019

3. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing; Association for Computing Machinery.

4. Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science.

5. Quantum machine learning;Biamonte;Nature,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum metric learning with fuzzy-informed learning;Physica A: Statistical Mechanics and its Applications;2024-06

2. An efficient ensemble-based Machine Learning for breast cancer detection;Biomedical Signal Processing and Control;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3