Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks

Author:

Huang Weihong,Li ZhongORCID,Kang Yanlei,Ye Xinghuo,Feng Wenming

Abstract

Drug repositioning, an important method of drug development, is utilized to discover investigational drugs beyond the originally approved indications, expand the application scope of drugs, and reduce the cost of drug development. With the emergence of increasingly drug-disease-related biological networks, the challenge still remains to effectively fuse biological entity data and accurately achieve drug-disease repositioning. This paper proposes a new drug repositioning method named EMPHCN based on enhanced message passing and hypergraph convolutional networks (HGCN). It firstly constructs the homogeneous multi-view information with multiple drug similarity features and then extracts the intra-domain embedding of drugs through the combination of HGCN and channel attention mechanism. Secondly, inter-domain information of known drug-disease associations is extracted by graph convolutional networks combining node and edge embedding (NEEGCN), and a heterogeneous network composed of drugs, proteins and diseases is built as an important auxiliary to enhance the inter-domain message passing of drugs and diseases. Besides, the intra-domain embedding of diseases is also extracted through HGCN. Ultimately, intra-domain and inter-domain embeddings of drugs and diseases are integrated as the final embedding for calculating the drug-disease correlation matrix. Through 10-fold cross-validation on some benchmark datasets, we find that the AUPR of EMPHCN reaches 0.593 (T1) and 0.526 (T2), respectively, and the AUC achieves 0.887 (T1) and 0.961 (T2) respectively, which shows that EMPHCN has an advantage over other state-of-the-art prediction methods. Concerning the new disease association prediction, the AUC of EMPHCN through the five-fold cross-validation reaches 0.806 (T1) and 0.845 (T2), which are 4.3% (T1) and 4.0% (T2) higher than the second best existing methods, respectively. In the case study, EMPHCN also achieves satisfactory results in real drug repositioning for breast carcinoma and Parkinson’s disease.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3