Inter-Site Cooperativity of Calmodulin N-Terminal Domain and Phosphorylation Synergistically Improve the Affinity and Selectivity for Uranyl

Author:

Beccia Maria RosaORCID,Sauge-Merle Sandrine,Brémond Nicolas,Lemaire David,Henri PierreORCID,Battesti Christine,Guilbaud PhilippeORCID,Crouzy Serge,Berthomieu CatherineORCID

Abstract

Uranyl–protein interactions participate in uranyl trafficking or toxicity to cells. In addition to their qualitative identification, thermodynamic data are needed to predict predominant mechanisms that they mediate in vivo. We previously showed that uranyl can substitute calcium at the canonical EF-hand binding motif of calmodulin (CaM) site I. Here, we investigate thermodynamic properties of uranyl interaction with site II and with the whole CaM N-terminal domain by spectrofluorimetry and ITC. Site II has an affinity for uranyl about 10 times lower than site I. Uranyl binding at site I is exothermic with a large enthalpic contribution, while for site II, the enthalpic contribution to the Gibbs free energy of binding is about 10 times lower than the entropic term. For the N–terminal domain, macroscopic binding constants for uranyl are two to three orders of magnitude higher than for calcium. A positive cooperative process driven by entropy increases the second uranyl-binding event as compared with the first one, with ΔΔG = −2.0 ± 0.4 kJ mol−1, vs. ΔΔG = −6.1 ± 0.1 kJ mol−1 for calcium. Site I phosphorylation largely increases both site I and site II affinity for uranyl and uranyl-binding cooperativity. Combining site I phosphorylation and site II Thr7Trp mutation leads to picomolar dissociation constants Kd1 = 1.7 ± 0.3 pM and Kd2 = 196 ± 21 pM at pH 7. A structural model obtained by MD simulations suggests a structural role of site I phosphorylation in the affinity modulation.

Funder

Toxicologie program CalUMo from the CEA

ECCOREV Research Federation

Programme Investissement Avenir DEMETERRES

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference56 articles.

1. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review;Rev. Environ. Health,2005

2. Acute chemical toxicity of uranium;Health Phys.,2008

3. Environmental uranium and human health;Rev. Environ. Health,1997

4. Revision of the biodistribution of uranyl in serum: Is fetuin-A the major protein target?;Chem. Res. Toxicol.,2013

5. Structural Environment and Stability of the Complexes Formed Between Calmodulin and Actinyl Ions;Inorg. Chem.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3