Author:
Cao Huan,Xu Xuejuan,Zhu Fuyu,Sheng Yanhui
Abstract
Cardiovascular stents enable the rapid re-endothelialization of endothelial cells (ECs), and the constant suppression of smooth muscle cell (SMC) proliferation has been proved to effectively prevent thrombosis. However, the development and application of such stents are still insufficient due the delayed re-endothelialization progress, as well as the poor durability of the SMC inhibition. In this paper, we developed a mussel-inspired coating with the ability for the dual delivery of both growth factor (e.g., platelet-derived growth factor, PDGF) and therapeutic gas (e.g., nitric oxide, NO) for thrombosis prevention. We firstly synthesized the mussel-inspired co-polymer (DMHM) of dopamine methacrylamide (DMA) and hydroxyethyl methacrylate (HEMA) and then coated the DMHM on 316L SS stents combined with CuII. Afterwards, we immobilized the PDGF on the DMHM-coated stent and found that the PDGF could be released in the first 3 days to enhance the recruitment, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) to promote re-endothelialization. The CuII could be “sealed” in the DMHM coating, with extended durability (2 months), with the capacity for catalyzed NO generation for up to 2 months to suppress the proliferation of SMCs. Such a stent surface modification strategy could enhance the development of the cardiovascular stents for thrombosis prevention.
Funder
Gusu School, Nanjing Medical University, Nanjing Medical University
Subject
Molecular Biology,Biochemistry