Blood Transcript Biomarkers Selected by Machine Learning Algorithm Classify Neurodegenerative Diseases including Alzheimer’s Disease

Author:

Huseby Carol J.,Delvaux Elaine,Brokaw Danielle L.,Coleman Paul D.

Abstract

The clinical diagnosis of neurodegenerative diseases is notoriously inaccurate and current methods are often expensive, time-consuming, or invasive. Simple inexpensive and noninvasive methods of diagnosis could provide valuable support for clinicians when combined with cognitive assessment scores. Biological processes leading to neuropathology progress silently for years and are reflected in both the central nervous system and vascular peripheral system. A blood-based screen to distinguish and classify neurodegenerative diseases is especially interesting having low cost, minimal invasiveness, and accessibility to almost any world clinic. In this study, we set out to discover a small set of blood transcripts that can be used to distinguish healthy individuals from those with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, Friedreich’s ataxia, or frontotemporal dementia. Using existing public datasets, we developed a machine learning algorithm for application on transcripts present in blood and discovered small sets of transcripts that distinguish a number of neurodegenerative diseases with high sensitivity and specificity. We validated the usefulness of blood RNA transcriptomics for the classification of neurodegenerative diseases. Information about features selected for the classification can direct the development of possible treatment strategies.

Funder

NIH Ruth L. Kirschstein NRSA T32 Postdoctoral training grant

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Artificial Intelligence in Cognitive Assessment and Early Detection of Alzheimer's Disease;Advances in Medical Technologies and Clinical Practice;2024-06-28

2. Gene Expression analysis for the diagnosis of Alzhemiers disease using Machine Learning;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

3. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review;Phytomedicine;2024-01

4. Exploring AI’s Role in Managing Neurodegenerative Disorders: Possibilities and Hurdles;Studies in Computational Intelligence;2024

5. Identifying Early Biomarkers of Multiple Sclerosis with Feature Selection Algorithms;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3