Complex-Valued CNN-Based Defect Reconstruction of Carbon Steel from Eddy Current Signals

Author:

Chen Bing1,Yu Tengwei1

Affiliation:

1. School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

Eddy current testing (ECT) has become a widely adopted technique for non-destructive testing (NDT) due to its effectiveness in detecting surface and near-surface defects in conductive materials. However, traditional methods mainly focus on defect detection and face significant challenges in extracting geometric information such as defect size and shape, which is crucial for structural health monitoring (SHM) and remaining useful life (RUL) assessment. To address these challenges, this study proposes a defect reconstruction approach based on a complex-valued convolutional neural network (CV-CNN), which directly leverages both amplitude and phase information inherent in complex-valued impedance signals. The proposed framework employs convolution, pooling, and activation operations specifically designed within the complex-valued domain to facilitate the high-fidelity reconstruction of defect morphology as well as precise multi-class defect classification. Notably, this approach processes the complete complex-valued signal without relying on prior structural parameters or baseline data, thereby achieving substantial improvements in both defect visualization and classification performance. Moreover, when compared to a complex-valued fully convolutional neural network (CV-FCNN), CV-CNN demonstrates a superior average classification accuracy of 85%, significantly outperforming the CV-FCNN model. Experimental results on carbon steel specimens with standard electrical discharge machining (EDM) notches under multi-frequency excitation confirm these advantages. This contribution provides a promising solution in the field of NDT for intelligent and precise defect detection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3