Water Security Assessment of China’s One Belt and One Road Region

Author:

Zhang Zhaofang,He Weijun,An Min,Degefu Dagmawi,Yuan Liang,Shen Juqin,Liao Zaiyi,Wu Xia

Abstract

The sustainable development of socioeconomic and environmental systems are highly dependent on water capital and water utilization efficiency. Nowadays, a significant portion of the world is facing water security issues due to a combination of various factors. As a result, socioeconomic and environmental systems are threatened. China is also currently experiencing problems. Water security assessment helps to identify key determining factors for optimal water utilization, so the authors present the Driving Forces-Pressures-Carrying Capacity-State-Impacts-Responses (DPSCIR) water security assessment framework. Unlike previous methods, the proposed framework incorporates the carrying capacity of the environment, and as a result, yields assessment results that are more realistic. As a case study, the proposed framework coupled with the entropy method is applied to assess the water security status of the One Belt and One Road (B&R) region in China. In addition, the water security level of the provinces and municipalities in this region are simulated for the time period from 2017 to 2022 using the Grey Prediction Model. The results show that Responses, State, Pressures, and Carrying Capacity Subsystems greatly influence water security of the region. According to the assessment, water security of the area improved from 2011 to 2016. The results portray the following trend among the three subregions of the study area, the water security of the 21st Maritime Silk Road (One Road) area is better than Silk Road Economic Belt (One Belt) and the Strategy Support and Pivotal Gateway (SSPG) of B&R areas. Generally, from the evaluation results it can be concluded that only focusing on the subsystem of Responses cannot entirely address the water security problems within the B&R area. Therefore, to ensure sustainable water security in the region and in the country, the government needs to design water resource management mechanisms that take all the subsystems into account.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3