Abstract
The Kalman filter represents a very popular signal processing tool, with a wide range of applications within many fields. Following a Bayesian framework, the Kalman filter recursively provides an optimal estimate of a set of unknown variables based on a set of noisy observations. Therefore, it fits system identification problems very well. Nevertheless, such scenarios become more challenging (in terms of the convergence and accuracy of the solution) when the parameter space becomes larger. In this context, the identification of linearly separable systems can be efficiently addressed by exploiting tensor-based decomposition techniques. Such multilinear forms can be modeled as rank-1 tensors, while the final solution is obtained by solving and combining low-dimension system identification problems related to the individual components of the tensor. Recently, the identification of multilinear forms was addressed based on the Wiener filter and most well-known adaptive algorithms. In this work, we propose a tensorial Kalman filter tailored to the identification of multilinear forms. Furthermore, we also show the connection between the proposed algorithm and other tensor-based adaptive filters. Simulation results support the theoretical findings and show the appealing performance features of the proposed Kalman filter for multilinear forms.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference48 articles.
1. Adaptation of a memoryless preprocessor for nonlinear acoustic echo cancelling
2. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation;Cichocki,2009
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献