Abstract
What would happen in Mediterranean rivers and streams if warming but not drying occurred? We examined whether the delivery of environmental flows within a warming climate can maintain suitable macroinvertebrate habitats despite warming. A two-dimensional ecohydraulic model was used to (1) simulate the influence of water temperature and flow on macroinvertebrates by calculating habitat suitability for 12 climate change scenarios and (2) identify the mechanism by which macroinvertebrate assemblages respond to warming. The results suggest that not all watersheds will be equally influenced by warming. The impact of warming depends on the habitat conditions before warming occurs. Watersheds can, thus, be categorized as losing (those in which warming will degrade current optimal thermal habitat conditions) and winning ones (those in which warming will optimize current sub-optimal thermal habitat conditions, until a given thermal limit). Our models indicate that in losing watersheds, the delivery of environmental flows can maintain suitable habitats (and, thus, healthy macroinvertebrate assemblages) for up to 1.8–2.5 °C of warming. In winning watersheds, environmental flows can maintain suitable habitats when thermal conditions are optimal. Environmental flows could, thus, be used as a proactive strategy/tool to mitigate the ecological impacts of warming before more expensive reactive measures within a changing climate become necessary.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献