Indoor Visible Light Positioning System Based on Point Classification Using Artificial Intelligence Algorithms

Author:

Long Qianqian1,Zhang Junyi1,Cao Lu1,Wang Wenrui1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

In RSSI-based indoor visible light positioning systems, when only RSSI is used for trilateral positioning, the receiver height needs to be known to calculate distance. Meanwhile, the positioning accuracy is greatly affected by multi-path effect interference, with the influence of the multi-path effect varying across different areas of the room. If only one single processing is used for positioning, the positioning error in the edge area will increase sharply. In order to address these problems, this paper proposes a new positioning scheme, which uses artificial intelligence algorithms for point classification. Firstly, height estimation is performed according to the received power data structure from different LEDs, which effectively extends the traditional RSSI trilateral positioning from 2D to 3D. The location points in the room are then divided into three categories: ordinary points, edge points and blind points, and corresponding models are used to process different types of points, respectively, to reduce the influence of the multi-path effect. Next, processed received power data are used in the trilateral positioning method for calculating the location point coordinates, and to reduce the room edge corner positioning error, so as to reduce the indoor average positioning error. Finally, a complete system is built in an experimental simulation to verify the effectiveness of the proposed schemes, which are shown to achieve centimeter-level positioning accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Do, T.H., and Yoo, M. (2016). An in-Depth Survey of Visible Light Communication Based Positioning Systems. Sensors, 16.

2. El-Rabbany, A. (2006). Introduction to GPS: The Global Positioning System, Artech House. [2nd ed.].

3. Indoor Tracking: Theory, Methods, and Technologies;Dardari;IEEE Trans. Veh. Technol.,2015

4. Dong, Y., He, G., Arslan, T., Yang, Y., and Ma, Y. (2023). Crowdsourced Indoor Positioning with Scalable WiFi Augmentation. Sensors, 23.

5. An intelligent positioning approach: RSSI-based indoor and outdoor localization scheme in Zigbee networks;Kuo;Int. Conf. Mach. Learn. Cybern.,2010

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3