A New NILM System Based on the SFRA Technique and Machine Learning

Author:

Mari Simone1ORCID,Bucci Giovanni1,Ciancetta Fabrizio1ORCID,Fiorucci Edoardo1ORCID,Fioravanti Andrea1ORCID

Affiliation:

1. Dipartimento di Ingegneria Industriale e dell’Informazione e di Economia, Università dell’Aquila, 67100 L’Aquila, Italy

Abstract

In traditional nonintrusive load monitoring (NILM) systems, the measurement device is installed upstream of an electrical system to acquire the total aggregate absorbed power and derive the powers absorbed by the individual electrical loads. Knowing the energy consumption related to each load makes the user aware and capable of identifying malfunctioning or less-efficient loads in order to reduce consumption through appropriate corrective actions. To meet the feedback needs of modern home, energy, and assisted environment management systems, the nonintrusive monitoring of the power status (ON or OFF) of a load is often required, regardless of the information associated with its consumption. This parameter is not easy to obtain from common NILM systems. This article proposes an inexpensive and easy-to-install monitoring system capable of providing information on the status of the various loads powered by an electrical system. The proposed technique involves the processing of the traces obtained by a measurement system based on Sweep Frequency Response Analysis (SFRA) through a Support Vector Machine (SVM) algorithm. The overall accuracy of the system in its final configuration is between 94% and 99%, depending on the amount of data used for training. Numerous tests have been conducted on many loads with different characteristics. The positive results obtained are illustrated and commented on.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Management in Residential Microgrid Based on Non-Intrusive Load Monitoring and Internet of Things;Smart Cities;2024-07-23

2. A Convolutional Transformer for Enhanced NILM in Human Activity Recognition;2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2024-06-26

3. Accurate Prediction and Detection of Adversarial Attack Through CatBoost Library;2024 International Conference on Science Technology Engineering and Management (ICSTEM);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3