The Influence of the Morphological Characteristics of Mining-Induced Ground Fissures on the Spatiotemporal Distribution of Soil Moisture

Author:

Song Ziheng12,Zhang Jian13,Chi Mingbo4,Guo Nan1,Yang Shang3,Guo Yangnan5,He Ruimin5,Gao Ze3

Affiliation:

1. State Key Laboratory of Water Resources Protection and Utilization in Coal Mining, Beijing 102299, China

2. Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment of People’s Republic of China, Beijing 100094, China

3. School of Mining and Geomatics Engineering, Hebei University of Engineering, Handan 056038, China

4. China Academy of Safety Science and Technology, Beijing 100012, China

5. Shendong Coal Group Co., Ltd., Yulin 719315, China

Abstract

In order to study the influence of fissure morphology on soil moisture-content changes under different fissure types, this study established HYDRUS 2.0 numerical models of stepped fissures and planar fissures with different fissure widths and depths based on the experimental condition parameters obtained from physical simulation tests. Then, we simulated the spatial and temporal variation rules of soil moisture around the fissures. The results showed a high level of agreement between the HYDRUS numerical simulations and actual measurements, indicating that the model accurately reflects the movement of soil moisture near fissures. The study found that ground fissures affected the spatial distribution of soil moisture, leading to an increased rate of moisture loss in the deep soil near the fissure walls. Moreover, larger fissures had greater horizontal and vertical effects on soil moisture. The soil moisture content is lower closer to the fissure walls. As the soil depth increased, the influence of the fissures gradually diminished. For planar fissure with a depth of 50 cm, the soil moisture content was 30.6%, 17.8%, and 8.4% lower at depths of 10, 30, and 50 cm, respectively, compared to a fissure with a depth of 10 cm. For a stepped fissure with a depth of 50 cm, the soil moisture content was 29.2%, 20.9%, and 13.9% lower at depths of 10, 30, and 50 cm, respectively, compared to a fissure with a depth of 10 cm. Under the same conditions of fissure width and depth, stepped fissures exhibit faster moisture loss, and the larger the fissure, the more significant the additional moisture loss compared to planar fissures.

Funder

Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining

The Science and Technology Innovation Project of CHN ENERGY

National Natural Science Foundation of China’s Youth Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3