Improved Golden Jackal Optimization for Optimal Allocation and Scheduling of Wind Turbine and Electric Vehicles Parking Lots in Electrical Distribution Network Using Rosenbrock’s Direct Rotation Strategy

Author:

Yang Jing1,Xiong Jiale1,Chen Yen-Lin2ORCID,Yee Por Lip1ORCID,Ku Chin Soon3ORCID,Babanezhad Manoochehr4

Affiliation:

1. Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 106344, Taiwan

3. Department of Computer Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia

4. Department of Statistics, Faculty of Sciences, Golestan University, Gorgan 49138-15759, Golestan, Iran

Abstract

In this paper, a multi-objective allocation and scheduling of wind turbines and electric vehicle parking lots are performed in an IEEE 33-bus radial distribution network to reach the minimum annual costs of power loss, purchased grid energy, wind energy, PHEV energy, battery degradation cost, and network voltage deviations. Decision variables, such as the site and size of wind turbines and electric parking lots in the distribution system, are found using an improved golden jackal optimization (IGJO) algorithm based on Rosenbrock’s direct rotational (RDR) strategy. The results showed that the IGJO finds the optimal solution with a lower convergence tolerance and a better (lower) objective function value compared to conventional GJO, the artificial electric field algorithm (AEFA), particle swarm optimization (PSO), and manta ray foraging optimization (MRFO) methods. The results showed that using the proposed method based on the IGJO, the energy loss cost, grid energy cost, and network voltage deviations were reduced by 29.76%, 65.86%, and 18.63%, respectively, compared to the base network. Moreover, the statistical analysis results proved their superiority compared to the conventional GJO, AEFA, PSO, and MRFO algorithms. Moreover, considering vehicles battery degradation costs, the losses cost, grid energy cost, and network voltage deviations have been reduced by 3.28%, 1.07%, and 4.32%, respectively, compared to the case without battery degradation costs. In addition, the results showed that the decrease in electric vehicle availability causes increasing losses for grid energy costs and weakens the network voltage profile, and vice versa.

Funder

National Science and Technology Council in Taiwan

Ministry of Education of Taiwan

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3