Multi-Method Diagnosis of Histopathological Images for Early Detection of Breast Cancer Based on Hybrid and Deep Learning

Author:

Al-Jabbar Mohammed1,Alshahrani Mohammed1,Senan Ebrahim Mohammed2ORCID,Ahmed Ibrahim Abdulrab1

Affiliation:

1. Computer Department, Applied College, Najran University, Najran 66462, Saudi Arabia

2. Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen

Abstract

Breast cancer (BC) is a type of cancer suffered by adult females worldwide. A late diagnosis of BC leads to death, so early diagnosis is essential for saving lives. There are many methods of diagnosing BC, including surgical open biopsy (SOB), which however constitutes an intense workload for pathologists to follow SOB and additionally takes a long time. Therefore, artificial intelligence systems can help by accurately diagnosing BC earlier; it is a tool that can assist doctors in making sound diagnostic decisions. In this study, two proposed approaches were applied, each with two systems, to diagnose BC in a dataset with magnification factors (MF): 40×, 100×, 200×, and 400×. The first proposed method is a hybrid technology between CNN (AlexNet and GoogLeNet) models that extracts features and classify them using the support vector machine (SVM). Thus, all BC datasets were diagnosed using AlexNet + SVM and GoogLeNet + SVM. The second proposed method diagnoses all BC datasets by ANN based on combining CNN features with handcrafted features extracted using the fuzzy color histogram (FCH), local binary pattern (LBP), and gray level co-occurrence matrix (GLCM), which collectively is called fusion features. Finally, the fusion features were fed into an artificial neural network (ANN) for classification. This method has proven its superior ability to diagnose histopathological images (HI) of BC accurately. The ANN algorithm based on fusion features achieved results of 100% for all metrics with the 400× dataset.

Funder

Deputy for Research and Innovation—Ministry of Education, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning for Early Breast Cancer Detection;Journal of Engineering and Science in Medical Diagnostics and Therapy;2024-07-26

2. Vision transformer based convolutional neural network for breast cancer histopathological images classification;Multimedia Tools and Applications;2024-07-03

3. Multimodal breast cancer hybrid explainable computer-aided diagnosis using medical mammograms and ultrasound Images;Biocybernetics and Biomedical Engineering;2024-07

4. Vision transformer-convolution for breast cancer classification using mammography images: A comparative study;International Journal of Hybrid Intelligent Systems;2024-06-11

5. An Enhanced Framework Employing Feature Fusion for Effective Classification of Digital Breast Tomosynthesis Scans;2024 International Conference on Machine Intelligence and Smart Innovation (ICMISI);2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3