An Efficient Optimization Technique for Training Deep Neural Networks

Author:

Mehmood Faisal1ORCID,Ahmad Shabir1ORCID,Whangbo Taeg Keun1

Affiliation:

1. Department of Computer Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea

Abstract

Deep learning is a sub-branch of artificial intelligence that acquires knowledge by training a neural network. It has many applications in the field of banking, automobile industry, agriculture, and healthcare industry. Deep learning has played a significant role in solving complex tasks related to computer vision, such as image classification, natural language processing, and object detection. On the other hand, optimizers also play an intrinsic role in training the deep learning model. Recent studies have proposed many deep learning models, such as VGG, ResNet, DenseNet, and ImageNet. In addition, there are many optimizers such as stochastic gradient descent (SGD), Adam, AdaDelta, Adabelief, and AdaMax. In this study, we have selected those models that require lower hardware requirements and shorter training times, which facilitates the overall training process. We have modified the Adam based optimizers and minimized the cyclic path. We have removed an additional hyper-parameter from RMSProp and observed that the optimizer works with various models. The learning rate is set to minimum and constant. The initial weights are updated after each epoch, which helps to improve the accuracy of the model. We also changed the position of the epsilon in the default Adam optimizer. By changing the position of the epsilon, it accumulates the updating process. We used various models with SGD, Adam, RMSProp, and the proposed optimization technique. The results indicate that the proposed method is effective in achieving the accuracy and works well with the state-of-the-art architectures.

Funder

GRRC program of Gyeonggi province

Development of AI-based Healthcare Devices

Gachon University research fund of 2021

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3