A Moth–Flame Optimized Echo State Network and Triplet Feature Extractor for Epilepsy Electro-Encephalography Signals

Author:

Tang Xue-song1ORCID,Jiang Luchao1,Hao Kuangrong1,Wang Tong1,Liu Xiaoyan1

Affiliation:

1. Faculty of Information Science, Donghua University, Shanghai 201620, China

Abstract

The analysis of epilepsy electro-encephalography (EEG) signals is of great significance for the diagnosis of epilepsy, which is one of the common neurological diseases of all age groups. With the developments of machine learning, many data-driven models have achieved great performance in EEG signals classification. However, it is difficult to select appropriate hyperparameters for the models to file a specific task. In this paper, an evolutionary algorithm enhanced model is proposed, which optimizes the fixed weights of the reservoir layer of the echo state network (ESN) according to the specific task. As evaluating a feature extractor relies heavily on the classifiers, a new feature distribution evaluation function (FDEF) using the label information of EEG signals is defined as the fitness function, which is an objective way to evaluate the performance of a feature extractor that not only focuses on the degree of dispersion, but also considers the relation amongst triplets. The performance of the proposed method is verified on the Bonn University dataset with an accuracy of 98.16% and on the CHB-MIT dataset with the highest sensitivity of 96.14%. The proposed method outperforms the previous EEG methods, as it can automatically optimize the hyperparameters of ESN to adjust the structure and initial parameters for a specific classification task. Furthermore, the optimization direction by using FDEF as the fitness of MFO no longer relies on the performance of the classifier but on the relative separability amongst classes.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3