Affiliation:
1. Faculty of Information Science, Donghua University, Shanghai 201620, China
Abstract
The analysis of epilepsy electro-encephalography (EEG) signals is of great significance for the diagnosis of epilepsy, which is one of the common neurological diseases of all age groups. With the developments of machine learning, many data-driven models have achieved great performance in EEG signals classification. However, it is difficult to select appropriate hyperparameters for the models to file a specific task. In this paper, an evolutionary algorithm enhanced model is proposed, which optimizes the fixed weights of the reservoir layer of the echo state network (ESN) according to the specific task. As evaluating a feature extractor relies heavily on the classifiers, a new feature distribution evaluation function (FDEF) using the label information of EEG signals is defined as the fitness function, which is an objective way to evaluate the performance of a feature extractor that not only focuses on the degree of dispersion, but also considers the relation amongst triplets. The performance of the proposed method is verified on the Bonn University dataset with an accuracy of 98.16% and on the CHB-MIT dataset with the highest sensitivity of 96.14%. The proposed method outperforms the previous EEG methods, as it can automatically optimize the hyperparameters of ESN to adjust the structure and initial parameters for a specific classification task. Furthermore, the optimization direction by using FDEF as the fitness of MFO no longer relies on the performance of the classifier but on the relative separability amongst classes.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献