Model Predictive Control of Parabolic PDE Systems under Chance Constraints

Author:

Voropai Ruslan1,Geletu Abebe2,Li Pu1ORCID

Affiliation:

1. Group of Process Optimization, Institute for Automation and Systems Engineering, Technische Universität Ilmenau, P.O. Box 100565, 98684 Ilmenau, Germany

2. German Research Chair, African Institute of Mathematical Sciences (AIMS), KN 3 Rd, Kigali, Rwanda

Abstract

Model predictive control (MPC) heavily relies on the accuracy of the system model. Nevertheless, process models naturally contain random parameters. To derive a reliable solution, it is necessary to design a stochastic MPC. This work studies the chance constrained MPC of systems described by parabolic partial differential equations (PDEs) with random parameters. Inequality constraints on time- and space-dependent state variables are defined in terms of chance constraints. Using a discretization scheme, the resulting high-dimensional chance constrained optimization problem is solved by our recently developed inner–outer approximation which renders the problem computationally amenable. The proposed MPC scheme automatically generates probability tubes significantly simplifying the derivation of feasible solutions. We demonstrate the viability and versatility of the approach through a case study of tumor hyperthermia cancer treatment control, where the randomness arises from the thermal conductivity coefficient characterizing heat flux in human tissue.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference80 articles.

1. Farlow, S. (1993). Partial Differential Equations for Scientists and Engineers, Dover Publications.

2. Ockendon, J., Howison, S., Lacey, A., and Movchan, A. (2003). Applied Partial Differential Equations, Oxford University Press.

3. Strauss, W. (2007). Partial Differential Equations: An Introduction, Wiley.

4. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data;Babuska;SIAM J. Numer. Anal.,2007

5. Multilevel Monte Carlo method for parabolic stochastic partial differential equations;Barth;BIT Numer. Math.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3