Identification of Vital Genes for NSCLC Integrating Mutual Information and Synergy

Author:

Yang Xiaobo1234ORCID,Mi Zhilong345ORCID,He Qingcai12346ORCID,Guo Binghui345,Zheng Zhiming345

Affiliation:

1. School of Mathematical Sciences, Beihang University, Beijing 100191, China

2. LMIB and NLSDE, Beihang University, Beijing 100191, China

3. Zhongguancun Laboratory, Beijing 100094, China

4. Peng Cheng Laboratory, Shenzhen 518055, China

5. Institute of Artificial Intelligence, Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China

6. Shen Yuan Honors College, Beihang University, Beijing 100191, China

Abstract

Lung cancer, amongst the fast growing malignant tumors, has become the leading cause of cancer death, which deserves attention. From a prevention and treatment perspective, advances in screening, diagnosis, and treatment have driven a reduction in non-small-cell lung cancer (NSCLC) incidence and improved patient outcomes. It is of benefit that the identification of key genetic markers contributes to the understanding of disease initiation and progression. In this work, information theoretical measures are proposed to determine the collaboration between genes and specific NSCLC samples. Top mutual information observes genes of high sample classification accuracy, such as STX11, S1PR1, TACC1, LRKK2, and SRPK1. In particular, diversity exists in different gender, histology, and smoking situations. Furthermore, leading synergy detects a high-accuracy combination of two ordinary individual genes, bringing a significant gain in accuracy. We note a strong synergistic effect of genes between COL1A2 and DCN, DCN and MMP2, and PDS5B and B3GNT8. Apart from that, RHOG is revealed to have quite a few functions in coordination with other genes. The results provide evidence for gene-targeted therapy as well as combined diagnosis in the context of NSCLC. Our approach can also be extended to find synergistic biomarkers associated with different diseases.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Key R&D Program of Guangdong Province, China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3