On the Borderline of Fields and Hyperfields

Author:

Massouros Christos G.1ORCID,Massouros Gerasimos G.2ORCID

Affiliation:

1. Core Department, Euripus Campus, National and Kapodistrian University of Athens, GR 34400 Euboia, Greece

2. School of Social Sciences, Hellenic Open University, GR 26335 Patra, Greece

Abstract

The hyperfield came into being due to a mathematical necessity that appeared during the study of the valuation theory of the fields by M. Krasner, who also defined the hyperring, which is related to the hyperfield in the same way as the ring is related to the field. The fields and the hyperfields, as well as the rings and the hyperrings, border on each other, and it is natural that problems and open questions arise in their boundary areas. This paper presents such occasions, and more specifically, it introduces a new class of non-finite hyperfields and hyperrings that is not isomorphic to the existing ones; it also classifies finite hyperfields as quotient hyperfields or non-quotient hyperfields, and it gives answers to the question that was raised from the isomorphic problems of the hyperfields: when can the subtraction of a field F’s multiplicative subgroup G from itself generate F? Furthermore, it presents a construction of a new class of hyperfields, and with regard to the problem of the isomorphism of its members to the quotient hyperfields, it raises a new question in field theory: when can the subtraction of a field F’s multiplicative subgroup G from itself give all the elements of the field F, except the ones of its multiplicative subgroup G?

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference101 articles.

1. Marty, F. (1934). Sur une Généralisation de la Notion de Groupe, Huitième Congrès des mathématiciens Scand.

2. Rôle de la Notion de Hypergroupe dans l’ étude de Groupes non Abéliens;Marty;C. R. Acad. Sci.,1935

3. Sur les groupes et hypergroupes attachés à une fraction rationelle;Marty;Ann. De L’ École Norm.,1936

4. Sur la primitivité des corps B-adiques;Krasner;Mathematica,1937

5. La loi de Jordan—Holder dans les hypergroupes et les suites generatrices des corps de nombres P–adiqes, (I);Krasner;Duke Math. J.,1940

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3