Identifying Influential Spreaders Using Local Information

Author:

Li Zhe1ORCID,Huang Xinyu2ORCID

Affiliation:

1. Software College, Shenyang University of Technology of China, Shenyang 110870, China

2. Software College, Northeastern University of China, Shenyang 110819, China

Abstract

The heterogeneous nature indicates that different nodes may play different roles in network structure and function. Identifying influential spreaders is crucial for understanding and controlling the spread processes of epidemic, information, innovations, and so on. So how to identify influential spreaders is an urgent and crucial issue of network science. In this paper, we propose a novel local-information-based method, which can obtain the degree information of nodes’ higher-order neighbors by only considering the directly connected neighbors. Specifically, only a few iterations are needed to be executed, the degree information of nodes’ higher-order neighbors can be obtained. In particular, our method has very low computational complexity, which is very close to the degree centrality, and our method is of great extensibility, with which more factors can be taken into account through proper modification. In comparison with the well-known state-of-the-art methods, experimental analyses of the Susceptible-Infected-Recovered (SIR) propagation dynamics on ten real-world networks evidence that our method generally performs very competitively.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference49 articles.

1. Newman, M.E.J. (2018). Networks, Oxford University Press. [2nd ed.].

2. Wang, X.F., Li, X., and Chen, G.R. (2012). Network Science: An Introduction, Higher Education Press.

3. Vital nodes identification in complex networks;Chen;Phys. Rep.,2016

4. Scale-free networks: A decade and beyond;Science,2009

5. Error and attack tolerance of complex networks;Albert;Nature,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3