Affiliation:
1. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China
2. Hangzhou City Infrastructure Management Center, Hangzhou 310026, China
3. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210024, China
Abstract
The estimation of construction costs for shield tunneling projects is typically based on a standard quota, which fails to consider the variation of geological parameters and often results in significant differences in unit cost. To address this issue, we propose a novel model based on a random forest machine learning procedure for analyzing the construction cost of shield tunnelling in complex geological conditions. We focus specifically on the unit consumption of grease, grouting, labor, water, and electricity. Using a dataset of geotechnical parameters and consumption quantities from a shield tunneling project, we employ KNN and correlation analysis to reduce the input dataset dimension from 17 to 6 for improved model accuracy and efficiency. Our proposed approach is applied to a shield tunneling project, with results showing that the compressive strength of geomaterial is the most influential parameter for grease, labor, water, and electricity, while it is the second most influential for grouting quantity. Based on these findings, we calculate the unit consumption and cost of the tunnelling project, which we classify into three geological categories: soil, soft rock, and hard rock. Comparing our results to the standard quota value, it is found that the unit cost of shield tunneling in soil is slightly lower (6%), while that in soft rock is very close to the standard value. However, the cost in the hard rock region is significantly greater (38%), which cannot be ignored in project budgeting. Ultimately, our results support the use of compressive strength as a classification index for shield tunneling in complex geological conditions, representing a valuable contribution to the field of tunneling cost prediction.
Funder
Study on influencing economic factors in large diameter shield tunneling under complex geological conditions
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献