Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing

Author:

Felipe Ángel1ORCID,Jaenada María1ORCID,Miranda Pedro1ORCID,Pardo Leandro1ORCID

Affiliation:

1. Department of Statistics and Operational Research, Complutense University of Madrid, 28040 Madrid, Spain

Abstract

In this paper, we introduce the restricted minimum density power divergence Gaussian estimator (MDPDGE) and study its main asymptotic properties. In addition, we examine it robustness through its influence function analysis. Restricted estimators are required in many practical situations, such as testing composite null hypotheses, and we provide in this case constrained estimators to inherent restrictions of the underlying distribution. Furthermore, we derive robust Rao-type test statistics based on the MDPDGE for testing a simple null hypothesis, and we deduce explicit expressions for some main important distributions. Finally, we empirically evaluate the efficiency and robustness of the method through a simulation study.

Funder

The Spanish

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference45 articles.

1. General Gaussian estimation;Zhang;J. Multivar. Anal.,2019

2. Kapur, J.N. (1989). Maximum Entropy Models in Science and Engineering, Wiley.

3. On distance-type Gaussian estimation;Castilla;J. Multivar. Anal.,2022

4. Robust and efficient estimation by minimising a density power divergence;Basu;Biometrika,1998

5. Pardo, L. (2006). Statistical Inference Based on Divergence Measures, CRC Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3