Stability Analysis for a Class of Stochastic Differential Equations with Impulses
Author:
Affiliation:
1. School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
2. School of Mathematical and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhongyuan University of Technology
Key Scientific Research Projects in Colleges and Universities of Henan Province
Promotion Projects
Publisher
MDPI AG
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Link
https://www.mdpi.com/2227-7390/11/6/1541/pdf
Reference33 articles.
1. Chen, C. (2021). Explicit solutions and stability properties of homogeneous polynomial dynamical systems via tensor orthogonal decomposition. arXiv.
2. Stability theory of hybrid dynamical systems with time delay;Liu;IEEE Trans. Autom. Control,2006
3. Finite-time stabilization and optimal feedback control;Haddad;IEEE Trans. Autom. Contro.,2016
4. On algebraic proofs of stability for homogeneous vector fields;Ahmadi;IEEE Trans. Autom. Control,2019
5. A characterization of Lyapunov inequalities for stability of switched systems;Jungers;IEEE Trans. Autom. Control,2017
Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Finite time stability of nonlinear impulsive stochastic system and its application to neural networks;Communications in Nonlinear Science and Numerical Simulation;2024-12
2. Stability analysis for neutral stochastic time-varying systems with delayed impulses;Communications in Nonlinear Science and Numerical Simulation;2024-11
3. Existence Results for Nonlinear Impulsive System with Causal Operators;Mathematics;2024-09-05
4. The averaging principle of Atangana–Baleanu fractional stochastic integro-differential systems with delay;The Journal of Analysis;2024-08-16
5. Analytical and Computational Results for Neutral Impulsive Fractional System on Time Scales;Contemporary Mathematics;2024-08-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3