Optimization Method for Solving Cloaking and Shielding Problems for a 3D Model of Electrostatics

Author:

Alekseev Gennadii1ORCID,Lobanov Alexey1ORCID

Affiliation:

1. Institute of Applied Mathematics FEB RAS, 7, Radio St., 690041 Vladivostok, Russia

Abstract

Inverse problems for a 3D model of electrostatics, which arise when developing technologies for designing electric cloaking and shielding devices, are studied. It is assumed that the devices being designed to consist of a finite number of concentric spherical layers filled with homogeneous anisotropic or isotropic media. A mathematical technique for solving these problems has been developed. It is based on the formulation of cloaking or shielding problems in the form of inverse problems for the electrostatic model under consideration, reducing the latter problems to finite-dimensional extremum problems, and finding their solutions using one of the global minimization methods. Using the developed technology, the inverse problems are replaced by control problems, in which the role of controls is played by the permittivities of separate layers composing the device being designed. To solve them, a numerical algorithm based on the particle swarm optimization method is proposed. Important properties of optimal solutions are established, one of which is the bang-bang property. It is shown on the base of the computational experiments that cloaking and shielding devices designed using the developed algorithm have the simplicity of technical implementation and the highest performance in the class of devices under consideration.

Funder

Institute of Applied Mathematics FEB RAS

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference52 articles.

1. Metamaterials at zero frequency;Wood;J. Phys. Condens. Matter,2007

2. Experimental realization of a magnetic cloak;Gomory;Science,2012

3. DC electric invisibility cloak;Yang;Phys. Rev. Lett.,2012

4. Manipulating dc currents with bilayer bulk natural materials;Han;Adv. Mater.,2014

5. Electrostatic field invisibility cloak;Lan;Sci. Rep.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3