Surface Morphology of Textured Transparent Conductive Oxide Thin Film Seen by Various Probes: Visible Light, X-rays, Electron Scattering and Contact Probe

Author:

Juraić KrunoslavORCID,Dubček Pavo,Bohač Mario,Gajović AndrejaORCID,Bernstorff SigridORCID,Čeh Miran,Hodzic Aden,Gracin Davor

Abstract

Fluorine-doped tin oxide thin films (SnO2:F) are widely used as transparent conductive oxide electrodes in thin-film solar cells because of their appropriate electrical and optical properties. The surface morphology of these films influences their optical properties and therefore plays an important role in the overall efficiencies of the solar cells in which they are implemented. At rough surfaces light is diffusely scattered, extending the optical path of light inside the active layer of the solar cell, which in term improves light absorption and solar cell conversion efficiency. In this work, we investigated the surface morphology of undoped and doped SnO2 thin films and their influence on the optical properties of the films. We have compared and analysed the results obtained by several complementary methods for thin-film surface morphology investigation: atomic force microscopy (AFM), transmission electron microscopy (TEM), and grazing-incidence small-angle X-ray scattering (GISAXS). Based on the AFM and TEM results we propose a theoretical model that reproduces well the GISAXS scattering patterns.

Funder

European Regional Development Fund

Croatian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Trends in Metal Oxide Thin Films: Synthesis and Applications of Tin Oxide;Aguir,2020

2. Transparent Conducting Oxide Films for Various Applications: A Review

3. Fluorine Tin Oxide as an Alternative to Indium Tin Oxide in Polymer LEDs

4. Frontier of transparent conductive oxide thin films

5. Transparent Conductive Oxides;Hosono,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3