Analysis of Landscape Connectivity among the Habitats of Asian Elephants in Keonjhar Forest Division, India

Author:

Tripathy Bismay RanjanORCID,Liu Xuehua,Songer Melissa,Zahoor Babar,Wickramasinghe W. M. S.,Mahanta Kirti Kumar

Abstract

Land development has impacted natural landforms extensively, causing a decline in resources and negative consequences to elephant populations, habitats, and gene flow. Often, elephants seek to fulfill basic needs by wandering into nearby human communities, which leads to human–elephant conflict (HEC), a serious threat to conserving this endangered species. Understanding elephant space use and connectivity among their habitats can offset barriers to ecological flow among fragmented populations. We focused on the Keonjhar Forest Division in Eastern India, where HEC has resulted in the deaths of ~300 people and several hundred elephants, and damaged ~4100 houses and ~12,700 acres of cropland between 2001 and 2018. Our objectives were to (1) analyze elephant space use based on their occupancy; (2) map connectivity by considering the land structure and HEC occurrences; (3) assess the quality of mapped connectivity and identify potential bottlenecks. We found that (1) the study area has the potential to sustain a significant elephant population by providing safe connectivity; (2) variables like forests, precipitation, rural built-up areas, cropland, and transportation networks were responsible for predicting elephant presence (0.407, SE = 0.098); (3) five habitat cores, interconnected by seven corridors were identified, of which three habitat cores were vital for maintaining connectivity; (4) landscape features, such as cropland, rural built-up, mining, and transportation networks created bottlenecks that could funnel elephant movement. Our findings also indicate that overlooking HEC in connectivity assessments could lead to overestimation of functionality. The study outcomes can be utilized as a preliminary tool for decision making and early planning during development projects.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3