Error Characteristics of Pan-Arctic Digital Elevation Models and Elevation Derivatives in Northern Sweden

Author:

Karlson MartinORCID,Bastviken DavidORCID,Reese HeatherORCID

Abstract

Many biochemical processes and dynamics are strongly controlled by terrain topography, making digital elevation models (DEM) a fundamental dataset for a range of applications. This study investigates the quality of four pan-Arctic DEMs (Arctic DEM, ASTER DEM, ALOS DEM and Copernicus DEM) within the Kalix River watershed in northern Sweden, with the aim of informing users about the quality when comparing these DEMs. The quality assessment focuses on both the vertical accuracy of the DEMs and their abilities to model two fundamental elevation derivatives, including topographic wetness index (TWI) and landform classification. Our results show that the vertical accuracy is relatively high for Arctic DEM, ALOS and Copernicus and in our study area was slightly better than those reported in official validation results. Vertical errors are mainly caused by tree cover characteristics and terrain slope. On the other hand, the high vertical accuracy does not translate directly into high quality elevation derivatives, such as TWI and landform classes, as shown by the large errors in TWI and landform classification for all four candidate DEMs. Copernicus produced elevation derivatives with results most similar to those from the reference DEM, but the errors are still relatively high, with large underestimation of TWI in land cover classes with a high likelihood of being wet. Overall, the Copernicus DEM produced the most accurate elevation derivatives, followed by slightly lower accuracies from Arctic DEM and ALOS, and the least accurate being ASTER.

Funder

Swedish Research Council for Environment Agricultural Sciences and Spatial Planning

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference74 articles.

1. Modelling landscape evolution

2. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications

3. Digital terrain models: An overviewe;Doyle;Photogramm. Eng. Remote Sens.,1978

4. Digital Terrain Modeling: Principles and Methodology;Li,2005

5. Digital Terrain Models;Hirt,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3