A Combined Strategy of Improved Variable Selection and Ensemble Algorithm to Map the Growing Stem Volume of Planted Coniferous Forest

Author:

Xu Xiaodong,Lin Hui,Liu Zhaohua,Ye Zilin,Li Xinyu,Long Jiangping

Abstract

Remote sensing technology is becoming mainstream for mapping the growing stem volume (GSV) and overcoming the shortage of traditional labor-consumed approaches. Naturally, the GSV estimation accuracy utilizing remote sensing imagery is highly related to the variable selection methods and algorithms. Thus, to reduce the uncertainty caused by variables and models, this paper proposes a combined strategy involving improved variable selection with the collinearity test and the secondary ensemble algorithm to obtain the optimally combined variables and extract a reliable GSV from several base models. Our study extracted four types of alternative variables from the Sentinel-1A and Sentinel-2A image datasets, including vegetation indices, spectral reflectance variables, backscattering coefficients, and texture features. Then, an improved variable selection criterion with the collinearity test was developed and evaluated based on machine learning algorithms (classification and regression trees (CART), k-nearest neighbors (KNN), support vector regression (SVR), and artificial neural network (ANN)) considering the correlation between variables and GSV (with random forest (RF), distance correlation coefficient (DC), maximal information coefficient (MIC), and Pearson correlation coefficient (PCC) as evaluation metrics), and the collinearity among the variables. Additionally, we proposed a secondary ensemble with an improved weighted average approach (IWA) to estimate the reliable forest GSV using the first ensemble models constructed by Bagging and AdaBoost. The experimental results demonstrated that the proposed variable selection criterion efficiently obtained the optimal combined variable set without affecting the forest GSV mapping accuracy. Specifically, considering the first ensemble, the relative root mean square error (rRMSE) values ranged from 21.91% to 30.28% for Bagging and 23.33% to 31.49% for AdaBoost, respectively. After the secondary ensemble involving the IWA, the rRMSE values ranged from 18.89% to 21.34%. Furthermore, the variance of the GSV mapped by the secondary ensemble with various ranking methods was significantly reduced. The results prove that the proposed combined strategy has great potential to reduce the GSV mapping uncertainty imposed by current variable selection approaches and algorithms.

Funder

Research of Key Technologies for Monitoring Forest Plantation Resources

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3