Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems

Author:

Arnaoutakis Georgios E.1ORCID,Katsaprakakis Dimitris A.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece

Abstract

Combined concentrated solar power with photovoltaics can provide electricity and heat at the same system while maximizing the power output with reduced losses. Spectral splitting is required in such systems to separate the infrared part of the solar spectrum towards the thermal system, while the visible and near-infrared radiation can be converted by the photovoltaic solar cell. The performance of concentrated solar power plants comprising reflective beam splitters for combined generation of electricity and heat is presented in this work. A 50 MW power plant is considered in this work as a case of study in Southern Crete, Greece. The solar power plant consists of parabolic trough collectors and utilizes beam splitters with varying reflectivity. The dynamic performance of the power plant is modeled, and the annual energy yield can be calculated. Up to 350 MWt of thermal power can be delivered to the photovoltaic system utilizing a 50% reflecting splitter. The penalty to the high-reflectivity system is limited to 16.9% and the annual energy yield is calculated as 53.32 GWh. During summer months, a higher energy yield by up to 84.8 MWh/month is produced at 80% reflectivity compared to 90% as a result of the number of parabolic troughs. The reported energy yields with reflectivity by dynamic modeling can highlight discrete points for improvement of the performance in concentrated solar power photovoltaics.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. European Parliament (2018). Directive

2. (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance). OJL, 156, 75-91.

3. European Parliament (2018). Directive

4. (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (Text with EEA relevance). OJL, 328, 82-209.

5. Katsaprakakis, D.A., Proka, A., Zafirakis, D., Damasiotis, M., Kotsampopoulos, P., Hatziargyriou, N., Dakanali, E., Arnaoutakis, G., and Xevgenos, D. (2022). Greek Islands’ Energy Transition: From Lighthouse Projects to the Emergence of Energy Communities. Energies, 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3